Leadership

Marc Papageorge

Entrepreneur and Principal Consultant

Marc Papageorge

President and Founder of ICINTEK LLC since 2003. Marc is a highly experienced hands-on entrepreneur with a demonstrated history of working with start-ups and large corporate environments in advanced materials, semiconductor, sensors, and systems. With an extensive experience managing product development & implementation, manufacturing operations, and growing new business activities globally, working and living abroad, he has successfully led technology businesses from greenfield stage to multi-million dollars in revenue.


Focusing on operations, engineering, and business development; supporting start-ups and IDM’s, for Semiconductors, MEMS, RF, Automotive, Agriculture, and Medical Sensor Devices. Marc has consulted for a variety of worldwide, well-known electronic companies, such as Analog Devices, Dow Corning, Henkel Electronic Materials, SMSC, Tektronix, and UBS to name a few.


Recently, Mr. Papageorge is a participating accredited investor in iOT sensor, and Smart Agri companies. He holds 12 granted patents, 5 pending, 7 engineering awards, and published numerous papers related in the semiconductor, MEMS, nano-materials, and I.C. packaging fields.

Partners

We align ourselves with key strategic partners to provide a wide range of legal, operational and international trade compliance support.

Patents

A list of Marc Papageorge's patents.

Publication number: 20170131230

Publication Date: May 11, 2017

Type: Application


Some embodiments include an electrochemical sensor. The electrochemical sensor has a lid element comprising a substrate, multiple electrodes, multiple interior contacts electrically coupled to the multiple electrodes, a base element configured to be coupled to the lid element, and an electrolyte element. The base element includes a sensor cavity, multiple exterior contacts located at an exterior surface of the base element, and multiple signal communication channels comprising multiple signal communication lines, and the electrolyte element is located in the sensor cavity. When the lid element is coupled to the base element, the multiple electrodes are located in the sensor cavity, the multiple electrodes are in electrolytic communication with the electrolyte element, the multiple interior contacts are located in the sensor cavity, and the multiple interior contacts are electrically coupled to the multiple exterior contacts by the multiple signal communication lines.


Read More

Publication number: 20160189520

Publication Date: June 30, 2016

Type: Application


An electronic device cover system that includes an electronic device cover engageable with an electronic device, a gas sensor coupled to the electronic device cover, and a control circuit communicatively coupled to the gas sensor and communicatively engageable with an electronic device. When the gas sensor detects a presence of a target gas, the control circuit receives a signal output by the gas sensor and outputs a signal receivable by an electronic device.


Read More

Publication number: 20140210083

Publication Date: July 31, 2014

Type: Application


In one embodiment, a device package is provided. The device package can include a substrate having first and second opposing surfaces, an opening being formed through the first and second surfaces of the substrate; a stiffener coupled to the first surface of the substrate, the stiffener having an extending portion that extends into the opening of the substrate; and an integrated circuit (IC) die coupled to the extending portion of the stiffener, the IC die being electrically coupled to the substrate.


Read More

Publication number: 8686558

Publication Date: April 1, 2014

Type: Grant


In one embodiment, a method for assembling a ball grid array (BGA) package is provided. The method includes providing a stiffener that has opposing first and second surfaces, wherein the first surface is capable of mounting an integrated circuit (IC) die in a central area and forming a pattern in at least a portion of the first surface to enhance the adhesiveness of an encapsulant material to the first surface.


Read More

Publication number: 20110318885

Publication Date: December 29, 2011

Type: Application


In one embodiment, a method for assembling a ball grid array (BGA) package is provided. The method includes providing a stiffener that has opposing first and second surfaces, wherein the first surface is capable of mounting an integrated circuit (IC) die in a central area and forming a pattern in at least a portion of the first surface to enhance the adhesiveness of an encapsulant material to the first surface.


Read More

Publication number: 8039949

Publication Date: October 18, 2011

Type: Grant


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 20100052151

Publication Date: March 4, 2010

Type: Application


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 7629681

Publication Date: December 8, 2009

Type: Grant


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 6882042

Publication Date: April 19, 2005

Type: Grant


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 20050077545

Publication Date: April 14, 2005

Type: Application


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 6882042

Publication Date: 2005

Citation: 29


Publication number: 20020135065

Publication Date: September 26, 2002

Type: Application


Electrically and thermally enhanced die-up ball grid array (BGA) packages are described. A BGA package includes a stiffener, substrate, a silicon die, and solder balls. The die is mounted to the top of the stiffener. The stiffener is mounted to the top of the substrate. A plurality of solder balls are attached to the bottom surface of the substrate. A top surface of the stiffener may be patterned. A second stiffener may be attached to the first stiffener. The substrate may include one, two, four, or other number of metal layers. Conductive vias through a dielectric layer of the substrate may couple the stiffener to solder balls. An opening may be formed through the substrate, exposing a portion of the stiffener. The stiffener may have a down-set portion. A heat slug may be attached to the exposed portion of the stiffener. A locking mechanism may be used to enhance attachment of the heat slug to the stiffener. The heat slug may be directly attached to the die through an opening in the stiffener.


Read More

Publication number: 5288769

Publication Date: Feb. 22, 1994


Publication number: 5136365

Publication Date: August 4, 1992


An adhesive material 220 including a fluxing agent and metal particles 240 is applied to either a substrate 200 having a metallization pattern 210 or an electrical component 230. The component 230 is positioned on the substrate 210 and heated. During the heating step, the fluxing agent.


Publication number: 5128746

Publication Date: July 7, 1992


An adhesive material 120 including a fluxing agent is applied to either a substrate 100 having a metallization pattern 110 or a solder bumped electrical component 130. The component 130 is positioned on the substrate 110 and the solder bump 140 is reflowed.


Publication number: 5132778

Publication Date: July 21, 1992


An adhesive material 220 including a fluxing agent and metal particles 240 is applied to either a substrate 200 having a metallization pattern 210 or an electrical component 230. The component 230 is positioned on the substrate 210 and heated. During the heating step, the fluxing agent.


Publication number: 5019673

Publication Date: May 28, 1991


A flip-chip package for integrated circuits is provided by over-molding an integrated circuit assembly which includes a flip-chip mounted to a very thin chip carrier. The flip-chip includes an array of bumped pads which fill an array of matching conductive through holes on the chip carrier.





Contact Us

Over 30 years of experience to help your company to grow.